33 research outputs found

    Wavelet-Fourier CORSING techniques for multi-dimensional advection-diffusion-reaction equations

    Get PDF
    We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case

    Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs

    Get PDF
    We study sparse recovery with structured random measurement matrices having independent, identically distributed, and uniformly bounded rows and with a nontrivial covariance structure. This class of matrices arises from random sampling of bounded Riesz systems and generalizes random partial Fourier matrices. Our main result improves the currently available results for the null space and restricted isometry properties of such random matrices. The main novelty of our analysis is a new upper bound for the expectation of the supremum of a Bernoulli process associated with a restricted isometry constant. We apply our result to prove new performance guarantees for the CORSING method, a recently introduced numerical approximation technique for partial differential equations (PDEs) based on compressive sensing

    Compressive Fourier collocation methods for high-dimensional diffusion equations with periodic boundary conditions

    Full text link
    High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and â„“1\ell^1 minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best ss-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.Comment: 33 pages, 9 figure

    Square Root {LASSO}: well-posedness, Lipschitz stability and the tuning trade off

    Full text link
    This paper studies well-posedness and parameter sensitivity of the Square Root LASSO (SR-LASSO), an optimization model for recovering sparse solutions to linear inverse problems in finite dimension. An advantage of the SR-LASSO (e.g., over the standard LASSO) is that the optimal tuning of the regularization parameter is robust with respect to measurement noise. This paper provides three point-based regularity conditions at a solution of the SR-LASSO: the weak, intermediate, and strong assumptions. It is shown that the weak assumption implies uniqueness of the solution in question. The intermediate assumption yields a directionally differentiable and locally Lipschitz solution map (with explicit Lipschitz bounds), whereas the strong assumption gives continuous differentiability of said map around the point in question. Our analysis leads to new theoretical insights on the comparison between SR-LASSO and LASSO from the viewpoint of tuning parameter sensitivity: noise-robust optimal parameter choice for SR-LASSO comes at the "price" of elevated tuning parameter sensitivity. Numerical results support and showcase the theoretical findings

    LASSO reloaded: a variational analysis perspective with applications to compressed sensing

    Full text link
    This paper provides a variational analysis of the unconstrained formulation of the LASSO problem, ubiquitous in statistical learning, signal processing, and inverse problems. In particular, we establish smoothness results for the optimal value as well as Lipschitz properties of the optimal solution as functions of the right-hand side (or measurement vector) and the regularization parameter. Moreover, we show how to apply the proposed variational analysis to study the sensitivity of the optimal solution to the tuning parameter in the context of compressed sensing with subgaussian measurements. Our theoretical findings are validated by numerical experiments
    corecore